Green’s function for second order elliptic equations with singular lower order coefficients
نویسندگان
چکیده
منابع مشابه
Singular Sets of Higher Order Elliptic Equations
The implicit function theorem implies that the zero set of a smooth function, the set where the function vanishes, is a smooth hypersurface away from the critical zero set. Hence to study zero sets it is important to understand the structure of the critical zero sets. For solutions of the second order elliptic equations the critical zero sets represent the singular parts of zero sets. They have...
متن کاملHigh order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources
This paper introduces a novel high order interface scheme, the matched interface and boundary (MIB) method, for solving elliptic equations with discontinuous coefficients and singular sources on Cartesian grids. By appropriate use of auxiliary line and/or fictitious points, physical jump conditions are enforced at the interface. Unlike other existing interface schemes, the proposed method disas...
متن کاملModified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملBoundary problems for the second order elliptic equations with rough coefficients
The main focus of the meeting was on boundary value problems for general differential operators L = −divA∇. Here A is an elliptic matrix with variable coefficients, given by complex-valued bounded and measurable functions. Such operators arise naturally in many problems of pure mathematics as well as in numerous applications. In particular, they describe a wide array of physical phenomena in ro...
متن کاملMultiscale Tailored Finite Point Method for Second Order Elliptic Equations with Rough or Highly Oscillatory Coefficients
We develop a multiscale tailored finite point method (MsTFPM) for second order elliptic equations with rough or highly oscillatory coefficients. The finite point method has been tailored to some particular properties of the problem, so that it can capture the multiscale solutions using coarse meshes without resolving the fine scale structure of the solution. Several numerical examples in oneand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2018
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2018.1543318